相关文章
友情链接

步进电机结构分析及步进电机工作原理

电机将电能转换成机械能,步进电机将电脉冲转换成特定的旋转运动。每个脉冲所产生的运动是精确的,并可重复,这就是为什么步进电机在定位应用中如此有效的原因。

两相定子中的A相被通电,因异性相吸,其磁场将转子固定在图示位置。当A相关闭、B相被通电时,转子顺时针旋转90°。在第3步中,B相关闭、A相被通电,但极性与第1步相反,这促使转子再次旋转90°。在第4步中,A相关闭、B相通电,极性与第2步相反。重复该顺序促使转子按90°的步距角顺时针旋转。

步进电机是一种专门用于位置和速度精确控制的特种电机。步进电机的最大特点是其“数字性”,对于微电脑发过来的每一个脉冲信号,步进电机在其驱动器的推动下运转一个固定角度,如接收到一串脉冲步进电机将连续运转一段相应距离。同时您可通过控制脉冲频率,直接对电机转速进行控制。由于步进电机工作原理易学易用,成本低、电机和驱动器不易损坏,非常适合于微电脑和单片机控制,因此近年来在各行各业的控制设备中获得了越来越广泛的应用.本文将向用户简述步进电机的基本结构和工作原理,举例说明步进电机驱动器的工作原理,直线步进电机的结构和步进电机的工作原理。

双极性绕组

二相通电步进顺利利用了一种“双极性线圈绕组”的方法,每极只有一个绕组,通过改变绕组中的电流方向,从而改变相应极上的电磁极性,典型的两相双极驱动的输出步骤在电器原理图和下面图5中的步进顺序中有进一步阐述。

单极性绕组

另一常用绕组是单极性绕组,每个电极上饶有两个绕组,当一个绕组通电时,产生被磁场,另一个绕组通电则产生南磁场,因为从驱动器到线圈的电流不会反向,所以可称为单极性绕组。该方法下电机的步进顺序见图6所示。通过这种设计使得电子驱动器简单化,但是与双极性绕组相比,其力矩大约小30%,因为磁线圈仅被利用了一半。

精度

混合式式步进电机精确度达3-5%每步,且不累积。一个1.2度的步进电机每步的误差会少于0.06度,而且不管走了多少步,这个误差是不会累积的。

力矩

一个特定的旋转步进电机所产生的力矩是下述参数的函数

• 步进速度

• 通过绕组的电流大小

• 所使用的驱动器的类型

(直线电机所产生的力也取决于这些因素)

半步步进

电机也可以转换相位之间插入一个关闭状态而走“半步”。这将步进电机的整个步距角一分为二。例如,一个90°的步进电机将每半步移动45°,但是,与“两相通电”相比,半步进通常导致15%-30%的力矩损失。在每交换半步的过程中,由于其中一个绕组没有通电,所以作用在转子上的电磁力要小,造成了力矩的净损失。